Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647087

RESUMEN

The feces of healthy middle-aged and old people were first transplanted into d-galactose-induced aging mice to construct humanized aging mice with gut microbiota (FMTC) to confirm the antiaging effect of probiotics produced from centenarians. The mouse model was then treated with centenarian-derived Bifidobacterium bifidum (FMTL), Lactobacillus casei (FMTB), and their mixtures (FMTM), and young mice were used as the control. Compared with the FMTC group, the results demonstrated that the probiotics and their combinations alleviated neuronal damage, increased antioxidant capacity, decreased inflammation, and enhanced cognitive and memory functions in aging mice. In the gut microbiota, the relative abundance of Lactobacillus, Ligilactobacillus, and Akkermansia increased and that of Desulfovibrio and Colidextribacter decreased in the FMTM group compared with that in the FMTC group. The three probiotic groups displayed significant changes in 15 metabolites compared with the FMTC group, with 4 metabolites showing increased expression and 11 metabolites showing decreased expression. The groups were graded as Control > FMTM > FMTB > FMTL > FMTC using a newly developed comprehensive quantitative scoring system that thoroughly analyzed the various indicators of this study. The beneficial antiaging effects of probiotics derived from centenarians were quantitatively described using a novel perspective in this study; it is confirmed that both probiotics and their combinations exert antiaging effects, with the probiotic complex group exhibiting a larger effect.

2.
Front Pediatr ; 12: 1334757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415208

RESUMEN

We will discuss a recent case of unexplained neonatal cyanosis, evaluate its origin, clinical presentation, diagnosis, and treatment, and share with you some of our clinical insights. We report a transient cyanosis in a newborn due to a mutation in the globulin gene (HBG2), as well as diagnosis and treatment. Clinically, the infant was in good overall health, and despite low oxygen saturation, the arterial oxygen partial pressure was always normal. Early respiratory support includes mechanical ventilation, nasal tube oxygen, and eventually stopping oxygen therapy. With the above treatment measures, the blood oxygen saturation of the child always fluctuated at 85%, but the arterial blood oxygen partial pressure was up to 306 mmHg. Further improvement of laboratory tests revealed elevated methemoglobin levels, reticulocytosis, mild anemia, and basically normal on chest x-ray and echocardiography. To clarify the etiology, WES testing was performed. The results showed heterozygous variation in HBG2 gene (c.190C>T. p.H64Y). There is heterozygous variation at this site in the proband father, and no variation at this site in the proband mother. Given the age of the affected infants, we hypothesized that the mutation originated in the gamma peptide chain of the head protein. The baby was discharged from the hospital 10 days after birth, with blood oxygen saturation fluctuating around 90%. The cyanosis disappeared 2 months after discharge, and the blood oxygen saturation level returned to normal.

3.
Hepatology ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051951

RESUMEN

BACKGROUND AND AIMS: Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS: We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-ß expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-ß expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-ß and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-ß and HCC. CONCLUSIONS: Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-ß signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.

4.
Cell Rep Med ; 4(9): 101162, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37597521

RESUMEN

Metabolic reprogramming is known as an emerging mechanism of chemotherapy resistance, but the metabolic signatures of pancreatic ductal adenocarcinomas (PDACs) remain unclear. Here, we characterize the metabolomic profile of PDAC organoids and classify them into glucomet-PDAC (high glucose metabolism levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDACs are more resistant to chemotherapy than lipomet-PDACs, and patients with glucomet-PDAC have a worse prognosis. Integrated analyses reveal that the GLUT1/aldolase B (ALDOB)/glucose-6-phosphate dehydrogenase (G6PD) axis induces chemotherapy resistance by remodeling glucose metabolism in glucomet-PDAC. Increased glycolytic flux, G6PD activity, and pyrimidine biosynthesis are identified in glucomet-PDAC with high GLUT1 and low ALDOB expression, and these phenotypes could be reversed by inhibiting GLUT1 expression or by increasing ALDOB expression. Pharmacological inhibition of GLUT1 or G6PD enhances the chemotherapy response of glucomet-PDAC. Our findings uncover potential metabolic heterogeneity related to differences in chemotherapy sensitivity in PDAC and develop a promising pharmacological strategy for patients with chemotherapy-resistant glucomet-PDAC through the combination of chemotherapy and GLUT1/ALDOB/G6PD axis inhibitors.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Fructosa-Bifosfato Aldolasa , Glucosa , Transportador de Glucosa de Tipo 1/genética , Glucosafosfato Deshidrogenasa , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122477, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791663

RESUMEN

The health risks posed by harmful substances resulting from the thermal degradation of frying oils are of great concern. Characteristic peak intensity ratios (PIRs) screened from Raman spectra were used to characterize the thermal degradation. High correlation coefficients between PIRs and acid values (AVs) of 0.972 (linear fitting), 0.984 (logarithmic function fitting), and 0.954 (linear fitting) for fried soybean oil, canola oil, and palm oil, were obtained at the PIRs of I1267/I1749, I1267/I1659, and I1267/I1749, respectively. The highly correlated PIRs common to the three oils were determined by Pearson's correlation coefficient combined with heat maps. To accommodate both linear and nonlinear features, a global model for predicting AVs of multi-varieties frying oils was constructed using a least-squares support vector machine algorithm, and the results performed well with a root mean square error of prediction of 0.016 and a ratio of prediction to deviation of 11.351. The whole results demonstrate that Raman spectroscopy could characterize the thermal degradation and has excellent quantitative analysis ability for food control based on AV in frying oils, thus providing a new approach to quality control of frying oils.


Asunto(s)
Aceites , Espectrometría Raman , Aceite de Brassica napus , Aceite de Palma , Ácidos , Aceites de Plantas/química
6.
Immun Inflamm Dis ; 11(1): e762, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36705417

RESUMEN

BACKGROUND: Interleukin-1ß (IL-1ß) is a pro-inflammatory cytokine mainly produced by monocytes and macrophages with a wide range of biological effects. Evidence has shown that IL-1ß plays a vital role in the process of apoptosis; however, the specific mechanisms, by which IL-1ß induces apoptosis, vary due to different cellular and experimental conditions. Therefore, this present reviewstudy aimed to systematically review the association between the molecular mechanisms of IL-1ß-induced apoptosis in pathological processes and the role of signaling pathways. This article also sought to briefly investigate the potential of signaling pathway-targeted therapy in the prevention and treatment of disease. METHODS: This is a literature review article. The present discourse aim is first to scrutinize and assess the available literature on IL-1ß and apoptosis. The relevant studies using the keywords of "IL-1ß-induced apoptosis" and "signaling pathways" were searched in the databases of PubMed, Scopus, Google Scholar, and Web of Science. Gathered relevant material, and extracted information was then assessed. RESULTS: IL-1ß can induce apoptosis in various types of cells under different external stimuli via the mitochondrial pathway, death receptor pathway and endoplasmic reticulum pathway, and that the different pathways are often interconnected. The NF-kB signaling pathway, p38MAPK, and JNK signaling pathways mainly play a proapoptotic part, and the ERK1/2 pathway has a bidirectional role in regulating apoptosis, while activation of the PI3K-Akt signaling pathway can inhibit apoptosis. CONCLUSION: This review indicates that IL-1ß-induced apoptosis plays an important role in pathogenesis and development of pathology of many inflammatory diseases. Elucidating the role of the signaling pathways will aid the development of targeted therapeutic treatments.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Interleucina-1beta , Células Cultivadas , Apoptosis
7.
Nutrients ; 14(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501069

RESUMEN

The purpose of this study was to investigate the effects of different dietary fiber compounds (DFCs) on characteristic human flora and their metabolites mediated by the longevity dietary pattern analyzed by in vitro fermentation. The results show that DFC1 (cereal fiber) increased the level of Lactobacillus (p < 0.05), DFC2 (fruit and vegetable and cereal fiber) promoted the growth of Lactobacillus and Bifidobacterium more significantly than DFC3 (fruit and vegetable fiber) (p < 0.01), and all three DFCs decreased the level of Escherichia coli (p < 0.05). The metabolomic analysis showed that there was variability in the metabolites and the metabolic pathways of different DFCs. The redundancy analysis revealed that the fiber content was positively correlated with Lactobacillus, Bifidobacterium, Bacteroides, acetic acid, butyric acid, propionic acid, lactic acid, and betaine, and negatively correlated with Escherichia coli, succinic acid, alanine, choline, aspartic acid, and α-glucose. Overall, this study found that different DFCs have different positive correlations on characteristic human flora and metabolites, and DFC2 is more favorable to the proliferation of the intestinal beneficial genera Lactobacillus and Bifidobacterium after in vitro fermentation, having a probiotic role in glucose, amino acid, and lipid metabolisms. This study may provide a theoretical reference for the search of optimal dietary fiber combination strategies mediated by longevity dietary pattern.


Asunto(s)
Fibras de la Dieta , Ácidos Grasos Volátiles , Humanos , Ácidos Grasos Volátiles/metabolismo , Fibras de la Dieta/análisis , Fermentación , Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Escherichia coli/metabolismo , Glucosa/metabolismo
8.
Front Nutr ; 9: 1051964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407526

RESUMEN

In the protein nutrition strategy of middle-aged and elderly people, some believe that low protein is good for health, while others believe high protein is good for health. Facing the contradictory situation, the following hypothesis is proposed. There is a process of change from lower to higher ratio of protein nutritional requirements that are good for health in the human body after about 50 years of age, and the age at which the switch occurs is around 65 years of age. Hence, in this study, 50, 25-month-old male rats were randomly divided into five groups: Control (basal diet), LP (low-protein diet with a 30% decrease in protein content compared to the basal diet), HP (high-protein diet with a 30% increase in protein content compared to the basal diet), Model 1 (switched from LP to HP feed at week 4), and Model 2 (switched from LP to HP feed at week 7). After a total of 10 weeks intervention, the liver and serum samples were examined for aging-related indicators, and a newly comprehensive quantitative score was generated using principal component analysis (PCA). The effects of the five protein nutritional modalities were quantified in descending order: Model 1 > HP > LP > Control > Model 2. Furthermore, the differential metabolites in serum and feces were determined by orthogonal partial least squares discriminant analysis, and 15 differential metabolites, significantly associated with protein intake, were identified by Spearman's correlation analysis (p < 0.05). Among the fecal metabolites, 10 were positively correlated and 3 were negatively correlated. In the serum, tyrosine and lactate levels were positively correlated, and acetate levels were negatively correlated. MetaboAnalyst analysis identified that the metabolic pathways influenced by protein intake were mainly related to amino acid and carbohydrate metabolism. The results of metabolomic analysis elucidate the mechanisms underlying the preceding effects to some degree. These efforts not only contribute to a unified protein nutrition strategy but also positively impact the building of a wiser approach to protein nutrition, thereby helping middle-aged and older populations achieve healthy aging.

9.
Foods ; 11(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36140997

RESUMEN

Microplastic (MP) contamination is a public issue for the environment and for human health. Plastic-based food filter bags, including polyethylene terephthalate, polypropylene, nylon 6 (NY6), and polyethylene, are widely used for soft drink sub-packaging, increasing the risk of MPs in foods and the environment. Three types of commercially available filter bags, including non-woven and woven bags, were collected, and MPs released after soaking were mapped using Raman imaging combined with chemometrics. Compared with peak area imaging at a single characteristic peak, Raman imaging combined with direct classical least squares calculation was more efficient and reliable for identifying MP features. Up to 94% of the bags released MPs after soaking, and there was no significant correlation with soaking conditions. Most MPs were tiny fragments and particles, and a few were fibrous MPs 620-840 µm in size. Woven NY6 filter bags had the lowest risk of releasing MPs. Source exploration revealed that most MPs originated from fragments and particles adsorbed on the surface of bags and strings. The results of this study are applicable to filter bag risk assessment and provide scientific guidance for regulating MPs in food.

10.
Front Pediatr ; 10: 850826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433548

RESUMEN

Physiological root resorption of deciduous teeth is a complex physiological process that is essential for the normal replacement of deciduous teeth and permanent teeth in clinical practice, but its importance is often overlooked due to the presence of permanent teeth. This physiological process includes not only the resorption of hard tissues of deciduous teeth, such as dentin and cementum, but also the elimination of soft tissues, such as pulp and periodontal ligament (PDL). However, the mechanisms of physiological root resorption are not yet clear. In this article, the advances of research on the mechanisms related to physiological root resorption will be reviewed in two main aspects: hard tissues and soft tissues of deciduous teeth, specifically in relation to the effects of inflammatory microenvironment and mechanical stress on the resorption of hard tissues, the repair of hard tissues, and the elimination and the histological events of soft tissues.

11.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791188

RESUMEN

RNA localization is involved in multiple biological processes. Recent advances in subcellular fractionation-based sequencing approaches uncovered localization pattern on a global scale. Most of existing methods adopt relative localization ratios (such as ratios of separately normalized transcripts per millions of different subcellular fractions without considering the difference in total RNA abundances in different fractions), however, absolute ratios may yield different results on the preference to different cellular compartment. Experimentally, adding external Spike-in RNAs to different fractionation can be used to obtain absolute ratios. In addition, a spike-in independent computational approach based on multiple linear regression model can also be used. However, currently, no custom tool is available. To solve this problem, we developed a method called subcellular fraction abundance estimator to correctly estimate relative RNA abundances of different subcellular fractionations. The ratios estimated by our method were consistent with existing reports. By applying the estimated ratios for different fractions, we explored the RNA localization pattern in cell lines and also predicted RBP motifs that were associated with different localization patterns. In addition, we showed that different isoforms of same genes could exhibit distinct localization patterns. To conclude, we believed our tool will facilitate future subcellular fractionation-related sequencing study to explore the function of RNA localization in various biological problems.


Asunto(s)
Fenómenos Biológicos , ARN , Isoformas de Proteínas/metabolismo , ARN/metabolismo , Fracciones Subcelulares/metabolismo
12.
Immunol Lett ; 241: 15-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774916

RESUMEN

Tumors with a low level of pre-existing immune cell infiltration respond poorly to immune checkpoint therapies. Oncolytic viruses optimize immunotherapies by modulating the tumor microenvironment and affecting multiple steps in the cancer-immunity cycle, making them an attractive agent for combination strategies. We engineered an HSV-1-based oncolytic virus and investigated its antitumor effects in combination with the marketed PD-1 antibody Keytruda (pembrolizumab) in hPD-1 knock-in mice bearing non-immunogenic B16-F10 melanoma. Our results showed enhanced CD8+ and CD4+ T cell infiltration, IFN-γ secretion and PD-L1 expression in tumors, subsequently leading to the prolonged overall survival of mice. Systemic changes in lymphocyte cell proportions were also observed in the peripheral blood. In summary, these findings provide evidence that oncolytic viruses can be engineered as a potential platform for combination therapies, especially to treat tumors that are poorly responsive to immune checkpoint therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Linfocitopenia-T Idiopática CD4-Positiva/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Terapia Combinada , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Melanoma/inmunología , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Transl Oncol ; 15(1): 101287, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34808461

RESUMEN

Cancer immunotherapy is a new therapeutic strategy for cancer treatment that targets tumors by improving or restoring immune system function. Therapies targeting immune checkpoint molecules have exerted potent anti-tumor effects and prolonged the overall survival rate of patients. However, only a small number of patients benefit from the treatment. Oncolytic viruses exert anti-tumor effects by regulating the tumor microenvironment and affecting multiple steps of tumor immune circulation. In this study, we engineered two oncolytic viruses that express mouse anti-PD-1 antibody (VT1093M) or mouse IL-12 (VT1092M). We found that both oncolytic viruses showed significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Importantly, the intratumoral combined injection with VT1092M and VT1093M inhibited growth of the primary tumor, prevented growth of the contralateral untreated tumor, produced a vaccine-like response, activated antigen-specific T cell responses and prolonged the overall survival rate of mice. These results indicate that combination therapy with the engineered oncolytic virus may represent a potent immunotherapy strategy for cancer patients, especially those resistant to PD-1/PD-L1 blockade therapy.

14.
Front Microbiol ; 12: 723697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603249

RESUMEN

Background: This study analyzed the antimicrobial resistance phenotypes and mechanisms of quinolone, cephalosporins, and colistin resistance in nontyphoidal Salmonella from patients with diarrhea in Jiangsu, China. Methods: A total of 741 nontyphoidal Salmonella isolates were collected from hospitals in major cities of Jiangsu Province, China between 2016 and 2017. Their susceptibility to commonly used antibiotics was evaluated by broth micro-dilution and sequencing analysis of resistance genes screened by a PCR method. For mcr-1 positive isolates, genetic relationship study was carried out by pulsed-field gel electrophoresis and multiloci sequence typing analysis. The transferability of these plasmids was measured with conjugation experiments and the genetic locations of mcr-1 were analyzed by pulsed-field gel electrophoresis profiles of S1-digested genomic DNA and subsequent Southern blot hybridization. Results: Among 741 nontyphoidal Salmonella isolates, the most common serotypes identified were S. Typhimurium (n=257, 34.7%) and S. Enteritidis (n=127, 17.1%), and the isolates showed 21.7, 20.6, and 5.0% resistance to cephalosporins, ciprofloxacin, and colistin, respectively. Among the 335 nalidixic acid-resistant Salmonella, 213 (63.6%) and 45 (13.4%) had at least one mutation in gyrA and parC. Among the plasmid-borne resistance, qnrS1 (85; 41.9%) and aac(6')-Ib-cr4 (75; 36.9%) were the most common quinolone resistance (PMQR) genes, while bla CTX-M-14 (n=35) and bla CTX-M-55 (n=46) were found to be dominant extended-spectrum beta-lactamase (ESBL) genes in nontyphoidal Salmonella. In addition, eight mcr-1-harboring strains were detected since 2016 and they were predominate in children under the age of 7years. Conjugation assays showed the donor Salmonella strain has functional and transferable colistin resistance and Southern blot hybridization revealed that mcr-1 was located in a high molecular weight plasmid. Conclusion: In nontyphoidal Salmonella, there is a rapidly increasing trend of colistin resistance and this is the first report of patients harboring mcr-1-positive Salmonella with a new ST type ST155 and new serotype S. Sinstorf. These findings demonstrate the necessity for cautious use and the continuous monitoring of colistin in clinical applications.

15.
Sensors (Basel) ; 21(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34450787

RESUMEN

A weak C-axis preferred AlN thin film with a lot of defects was fabricated for temperature measurement. It was found that the (002) diffraction peak of the thin film increased monotonously with the increase in annealing temperature and annealing time. This phenomenon is ascribed to the evolution of defects in the lattice of the AlN film. Therefore, the relationship between defects and annealing can be expressed by the offset of (002) diffraction peak, which can be used for temperature measurement. Furthermore, a temperature interpretation algorithm Equation based on the lattice parameter (2θ), annealing temperature and annealing time was established, and a temperature interpretation software was built with MATLAB. Visual temperature interpretation is realized by the software, and the relative error is less than 7%. This study is of great significance for promoting the accurate temperature measurement on the surface of high temperature component.

16.
Hepatology ; 74(6): 3037-3055, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34292642

RESUMEN

BACKGROUND AND AIMS: Insulin receptor (IR) transduces cell surface signal through phosphoinositide 3-kinase (PI3K)-AKT pathways or translocates to the nucleus and binds to the promoters to regulate genes associated with insulin actions, including de novo lipogenesis (DNL). Chronic activation of IR signaling drives malignant transformation, but the underlying mechanisms remain poorly defined. Down-regulation of fructose-1,6-bisphosphate aldolase (ALDO) B in hepatocellular carcinoma (HCC) is correlated with poor prognosis. We aim to study whether and how ALDOB is involved in IR signaling in HCC. APPROACH AND RESULTS: Global or liver-specific ALDOB knockout (L-ALDOB-/- ) mice were used in N-diethylnitrosamine (DEN)-induced HCC models, whereas restoration of ALDOB expression was achieved in L-ALDOB-/- mice by adeno-associated virus (AAV). 13 C6 -glucose was employed in metabolic flux analysis to track the de novo fatty acid synthesis from glucose, and nontargeted lipidomics and targeted fatty acid analysis using mass spectrometry were performed. We found that ALDOB physically interacts with IR and attenuates IR signaling through down-regulating PI3K-AKT pathways and suppressing IR nuclear translocation. ALDOB depletion or disruption of IR/ALDOB interaction in ALDOB mutants promotes DNL and tumorigenesis, which is significantly attenuated with ALDOB restoration in L-ALDOB-/- mice. Notably, attenuated IR/ALDOB interaction in ALDOB-R46A mutant exhibits more significant tumorigenesis than releasing ALDOB/AKT interaction in ALDOB-R43A, whereas knockdown IR sufficiently diminishes tumor-promoting effects in both mutants. Furthermore, inhibiting phosphorylated AKT or fatty acid synthase significantly attenuates HCC in L-ALDOB-/- mice. Consistently, ALDOB down-regulation is correlated with up-regulation of IR signaling and DNL in human HCC tumor tissues. CONCLUSIONS: Our study reports a mechanism by which loss of ALDOB activates IR signaling primarily through releasing IR/ALDOB interaction to promote DNL and HCC, highlighting a potential therapeutic strategy in HCC.


Asunto(s)
Carcinogénesis/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Lipogénesis/genética , Neoplasias Hepáticas Experimentales/genética , Receptor de Insulina/metabolismo , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Línea Celular Tumoral , Dietilnitrosamina/administración & dosificación , Regulación hacia Abajo , Ácidos Grasos/biosíntesis , Fructosa-Bifosfato Aldolasa/genética , Regulación Neoplásica de la Expresión Génica , Lipidómica , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones Noqueados , Fosforilación
17.
Free Radic Res ; 55(4): 405-415, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33455488

RESUMEN

Cardiovascular disease (CVD), including heart attack, stroke, heart failure, arrhythmia, and other congenital heart diseases remain the leading cause of morbidity and mortality worldwide. The leading cause of deaths in CVD is attributed to myocardial infarction due to the rupture of atherosclerotic plaque. Atherosclerosis refers a condition when restricted or even blockage of blood flow occurs due to the narrowing of blood vessels as a result of the buildup of plaques composed of oxidized lipids. It is well-established that free radical oxidation of polyunsaturated fatty acids (PUFAs) in lipoproteins or cell membranes, termed lipid peroxidation (LPO), plays a significant role in atherosclerosis. LPO products are involved in immune responses and cell deaths in this process, in which previous evidence supports the role of programmed cell death (apoptosis) and necrosis. Ferroptosis is a newly identified form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels, which exhibits distinct features from apoptosis, necrosis and autophagy in morphology, biochemistry and genetics. Emerging evidence appears to demonstrate that ferroptosis is also involved in CVD. In this review, we summarize the recent progress on ferroptosis in CVD and atherosclerosis, highlighting the role of free radical LPO. The evidence underlying the ferroptosis and challenges in the field will also be critically discussed.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Peróxidos Lipídicos/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Enfermedades Cardiovasculares/patología , Ferroptosis , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Peróxidos Lipídicos/química
18.
Plant Dis ; 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258424

RESUMEN

Bletilla striata (Thunb.) Rchb. f. (Orchidaceae) is traditionally used for hemostasis and detumescence in China. In April 2019, a leaf spot disease on B. striata was observed in plant nurseries in Guilin, Guangxi Province, China, with an estimated incidence of ~30%. Initial symptoms include the appearance of circular or irregular brown spots on leaf surfaces, which progressively expand into large, dark brown, necrotic areas. As lesions coalesce, large areas of the leaf die, ultimately resulting in abscission. To isolate the pathogen, representative samples exhibiting symptoms were collected, leaf tissues (5 × 5 mm) were cut from the junction of diseased and healthy tissue, surface-disinfected in 1% sodium hypochlorite solution for 2 min, rinsed three times in sterile water, plated on potato dextrose agar (PDA) medium, and incubated at 28°C (12-h light-dark cycle) for 3 days. Hyphal tips from recently germinated spores were transferred to PDA to obtain pure cultures. Nine fungal isolates with similar morphological characteristics were obtained. Colonies on PDA were villose, had a dense growth of aerial mycelia and appeared pinkish white from above and greyish orange at the center and pinkish-white at the margin on the underside. Macroconidia were smooth, and hyaline, with a dorsiventral curvature, hooked to tapering apical cells, and 3- to 5-septate. Three-septate macroconidia were 21.2 to 32.1 × 2.4 to 3.9 µm (mean ± SD: 26.9 ± 2.5 × 3.2 ± 0.4 µm, n = 30); 4-septate macroconidia were 29.5 to 38.9 × 3.0 to 4.3 µm (mean ± SD: 33.5 ± 2.6 × 3.6 ± 0.3 µm, n = 40); and 5-septate macroconidia were 39.3 to 55.6 × 4.0 to 5.4 µm (mean ± SD: 48.0 ± 3.9 × 4.5 ± 0.3 µm, n = 50). These morphological characteristics were consistent with F. ipomoeae, a member of the Fusarium incarnatum-equiseti species complex (FIESC) (Wang et al. 2019). To confirm the fungal isolate's identification, the genomic DNA of the single-spore isolate BJ-22.3 was extracted using the CTAB method (Guo et al. 2000). The internal transcribed space (ITS) region of rDNA, translation elongation factor-1 alpha (TEF-1α), and partial RNA polymerase second largest subunit (RPB2) were amplified using primer pairs [ITS1/ITS4 (White et al. 1990), EF-1/EF-2 (O'Donnell et al. 1998), and 5f2/11ar (Liu, Whelen et al. 1999, Reeb, Lutzoni et al. 2004), respectively]. The ITS (MT939248), TEF-1α (MT946880), and RPB2 (MT946881) sequences of the BJ-22.3 isolate were deposited in GenBank. BLASTN analysis of these sequences showed over 99% nucleotide sequence identity with members of the FIESC: the ITS sequence showed 99.6% identity (544/546 bp) to F. lacertarum strain NRRL 20423 (GQ505682); the TEF-1α sequence showed 99.4% similarity (673/677 bp) to F. ipomoeae strain NRRL 43637 (GQ505664); and the RPB2 sequence showed 99.6% identity (1883/1901 bp) to F. equiseti strain GZUA.1657 (MG839492). Phylogenetic analysis using concatenated sequences of ITS, TEF-1α, and RPB2 showed that BJ-22.3 clustered monophyletically with strains of F. ipomoeae. Therefore, based on morphological and molecular characteristics, the isolate BJ-22.3 was identified as F. ipomoeae. To verify the F. ipomoeae isolate's pathogenicity, nine 1.5-year-old B. striata plants were inoculated with three 5 × 5 mm mycelial discs of strain BJ-22.3 from 4-day-old PDA cultures. Additionally, three control plants were inoculated with sterile PDA discs. The experiments were replicated three times. All plants were enclosed in transparent plastic bags and incubated in a greenhouse at 26°C for 14 days. Four days post-inoculation, leaf spot symptoms appeared on the inoculated leaves, while no symptoms were observed in control plants. Finally, F. ipomoeae was consistently re-isolated from leaf lesions from the infected plants. To our knowledge, this is the first report of F. ipomoeae causing leaf spot disease on B. striata in China. The spread of this disease might pose a serious threat to the production of B. striata. Growers should implement disease management to minimize the risks posed by this pathogen.

19.
Anal Chem ; 90(17): 10628-10634, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30092629

RESUMEN

Ochratoxin A (OTA) is a common food contaminant that threatens consumers' safety and health. A sensitive and selective biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) for OTA using a nanobody-AviTag fusion protein (Nb-AviTag) was developed in this study. The prokaryotic expression vector Nb28-AviTag-pAC6 for Nb-AviTag was constructed, followed by transformation to the AVB101 cells for antibody expression and in vivo biotinylation. The purified Nb28-AviTag was used to establish the BA-ELISA and the procedures for this Nb-AviTag-based BA-ELISA were optimized. The Nb-AviTag-based BA-ELISA exhibited the half maximal inhibitory concentration (IC50) of 0.14 ng mL-1 and the limit of detection (LOD = IC10) of 0.028 ng mL-1 for OTA basing on the optimized experiment parameters. The assay sensitivity was improved 4.6 times and 4.3 times compared to Nb-based ELISA, respectively. This method had LODs of 1.4 µg kg-1 in barley, 0.56 µg kg-1 in oats, and 0.84 µg kg-1 in rice for OTA. The average recovery percent was in a range of 84-137%, and the relative standard derivation percent ranged from 0.64% to 7.8%. The content of OTA in contaminated cereal samples was determined by both the developed Nb-AviTag-based method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrated that the Nb-AviTag was a robust and promising bioreceptor in highly sensitive detection of OTA and other low molecular weight compounds using BA system.


Asunto(s)
Biotina/inmunología , Grano Comestible/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Ocratoxinas/inmunología , Proteínas Recombinantes de Fusión/inmunología , Anticuerpos de Dominio Único/inmunología , Estreptavidina/inmunología , Límite de Detección
20.
Nanoscale Res Lett ; 13(1): 168, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872934

RESUMEN

We proposed and demonstrated MgZnO metal-semiconductor-metal (MSM) ultraviolet photodetectors (UV) assisted with surface plasmons (SPs) prepared by the radio frequency magnetron sputtering deposition method. After the decoration of their surface with Pt nanoparticles (NPs), the responsivity of all the electrode spacing (3, 5, and 8 µm) photodetectors were enhanced dramatically; to our surprise, comparing with them the responsivity of larger spacing sample, more SPs were gathered which are smaller than others in turn. A physical mechanism focused on SPs and depletion width is given to explain the above results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...